SGLang Frontend Language#

SGLang frontend language can be used to define simple and easy prompts in a convenient, structured way.

Launch A Server#

Launch the server in your terminal and wait for it to initialize.

[1]:
import requests
import os

from sglang import assistant_begin, assistant_end
from sglang import assistant, function, gen, system, user
from sglang import image
from sglang import RuntimeEndpoint, set_default_backend
from sglang.srt.utils import load_image
from sglang.test.test_utils import is_in_ci
from sglang.utils import print_highlight, terminate_process, wait_for_server

if is_in_ci():
    from patch import launch_server_cmd
else:
    from sglang.utils import launch_server_cmd


server_process, port = launch_server_cmd(
    "python -m sglang.launch_server --model-path Qwen/Qwen2.5-7B-Instruct --host 0.0.0.0"
)

wait_for_server(f"http://localhost:{port}")
print(f"Server started on http://localhost:{port}")
[2025-05-29 06:37:55] server_args=ServerArgs(model_path='Qwen/Qwen2.5-7B-Instruct', tokenizer_path='Qwen/Qwen2.5-7B-Instruct', tokenizer_mode='auto', skip_tokenizer_init=False, load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization=None, quantization_param_path=None, context_length=None, device='cuda', served_model_name='Qwen/Qwen2.5-7B-Instruct', chat_template=None, completion_template=None, is_embedding=False, enable_multimodal=None, revision=None, host='0.0.0.0', port=34318, mem_fraction_static=0.88, max_running_requests=200, max_total_tokens=20480, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='fcfs', schedule_conservativeness=1.0, cpu_offload_gb=0, page_size=1, tp_size=1, pp_size=1, max_micro_batch_size=None, stream_interval=1, stream_output=False, random_seed=626550622, constrained_json_whitespace_pattern=None, watchdog_timeout=300, dist_timeout=None, download_dir=None, base_gpu_id=0, gpu_id_step=1, log_level='info', log_level_http=None, log_requests=False, log_requests_level=0, show_time_cost=False, enable_metrics=False, bucket_time_to_first_token=None, bucket_e2e_request_latency=None, bucket_inter_token_latency=None, collect_tokens_histogram=False, decode_log_interval=40, enable_request_time_stats_logging=False, kv_events_config=None, api_key=None, file_storage_path='sglang_storage', enable_cache_report=False, reasoning_parser=None, dp_size=1, load_balance_method='round_robin', ep_size=1, dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', preferred_sampling_params=None, lora_paths=None, max_loras_per_batch=8, lora_backend='triton', attention_backend=None, sampling_backend='flashinfer', grammar_backend='xgrammar', speculative_algorithm=None, speculative_draft_model_path=None, speculative_num_steps=None, speculative_eagle_topk=None, speculative_num_draft_tokens=None, speculative_accept_threshold_single=1.0, speculative_accept_threshold_acc=1.0, speculative_token_map=None, enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, disable_radix_cache=False, disable_cuda_graph=True, disable_cuda_graph_padding=False, enable_nccl_nvls=False, enable_tokenizer_batch_encode=False, disable_outlines_disk_cache=False, disable_custom_all_reduce=False, disable_overlap_schedule=False, enable_mixed_chunk=False, enable_dp_attention=False, enable_dp_lm_head=False, enable_two_batch_overlap=False, enable_ep_moe=False, enable_deepep_moe=False, deepep_mode='auto', ep_num_redundant_experts=0, ep_dispatch_algorithm='static', init_expert_location='trivial', enable_eplb=False, eplb_rebalance_num_iterations=1000, expert_distribution_recorder_mode=None, expert_distribution_recorder_buffer_size=1000, enable_expert_distribution_metrics=False, deepep_config=None, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=None, cuda_graph_bs=None, torchao_config='', enable_nan_detection=False, enable_p2p_check=False, triton_attention_reduce_in_fp32=False, triton_attention_num_kv_splits=8, num_continuous_decode_steps=1, delete_ckpt_after_loading=False, enable_memory_saver=False, allow_auto_truncate=False, enable_custom_logit_processor=False, tool_call_parser=None, enable_hierarchical_cache=False, hicache_ratio=2.0, hicache_size=0, hicache_write_policy='write_through_selective', flashinfer_mla_disable_ragged=False, warmups=None, moe_dense_tp_size=None, n_share_experts_fusion=0, disable_chunked_prefix_cache=False, disable_fast_image_processor=False, mm_attention_backend=None, debug_tensor_dump_output_folder=None, debug_tensor_dump_input_file=None, debug_tensor_dump_inject=False, disaggregation_mode='null', disaggregation_bootstrap_port=8998, disaggregation_transfer_backend='mooncake', disaggregation_ib_device=None, pdlb_url=None)
[2025-05-29 06:38:08] Attention backend not set. Use fa3 backend by default.
[2025-05-29 06:38:08] Init torch distributed begin.
[2025-05-29 06:38:11] Init torch distributed ends. mem usage=0.02 GB
[2025-05-29 06:38:11] init_expert_location from trivial
[2025-05-29 06:38:12] Load weight begin. avail mem=61.88 GB
[2025-05-29 06:38:13] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards:   0% Completed | 0/4 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  25% Completed | 1/4 [00:00<00:02,  1.29it/s]
Loading safetensors checkpoint shards:  50% Completed | 2/4 [00:01<00:01,  1.17it/s]
Loading safetensors checkpoint shards:  75% Completed | 3/4 [00:02<00:00,  1.15it/s]
Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:03<00:00,  1.16it/s]
Loading safetensors checkpoint shards: 100% Completed | 4/4 [00:03<00:00,  1.17it/s]

[2025-05-29 06:38:16] Load weight end. type=Qwen2ForCausalLM, dtype=torch.bfloat16, avail mem=47.52 GB, mem usage=14.36 GB.
[2025-05-29 06:38:16] KV Cache is allocated. #tokens: 20480, K size: 0.55 GB, V size: 0.55 GB
[2025-05-29 06:38:16] Memory pool end. avail mem=46.22 GB
[2025-05-29 06:38:17] max_total_num_tokens=20480, chunked_prefill_size=8192, max_prefill_tokens=16384, max_running_requests=200, context_len=32768
[2025-05-29 06:38:17] INFO:     Started server process [1168078]
[2025-05-29 06:38:17] INFO:     Waiting for application startup.
[2025-05-29 06:38:17] INFO:     Application startup complete.
[2025-05-29 06:38:17] INFO:     Uvicorn running on http://0.0.0.0:34318 (Press CTRL+C to quit)
[2025-05-29 06:38:18] INFO:     127.0.0.1:48174 - "GET /v1/models HTTP/1.1" 200 OK
[2025-05-29 06:38:18] INFO:     127.0.0.1:48190 - "GET /get_model_info HTTP/1.1" 200 OK
[2025-05-29 06:38:18] Prefill batch. #new-seq: 1, #new-token: 6, #cached-token: 0, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:20] INFO:     127.0.0.1:48200 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:20] The server is fired up and ready to roll!


NOTE: Typically, the server runs in a separate terminal.
In this notebook, we run the server and notebook code together, so their outputs are combined.
To improve clarity, the server logs are displayed in the original black color, while the notebook outputs are highlighted in blue.
We are running those notebooks in a CI parallel environment, so the throughput is not representative of the actual performance.
Server started on http://localhost:34318

Set the default backend. Note: Besides the local server, you may use also OpenAI or other API endpoints.

[2]:
set_default_backend(RuntimeEndpoint(f"http://localhost:{port}"))
[2025-05-29 06:38:23] INFO:     127.0.0.1:48202 - "GET /get_model_info HTTP/1.1" 200 OK

Basic Usage#

The most simple way of using SGLang frontend language is a simple question answer dialog between a user and an assistant.

[3]:
@function
def basic_qa(s, question):
    s += system(f"You are a helpful assistant than can answer questions.")
    s += user(question)
    s += assistant(gen("answer", max_tokens=512))
[4]:
state = basic_qa("List 3 countries and their capitals.")
print_highlight(state["answer"])
[2025-05-29 06:38:23] Prefill batch. #new-seq: 1, #new-token: 31, #cached-token: 0, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:23] Decode batch. #running-req: 1, #token: 64, token usage: 0.00, cuda graph: False, gen throughput (token/s): 6.33, #queue-req: 0
[2025-05-29 06:38:23] INFO:     127.0.0.1:48216 - "POST /generate HTTP/1.1" 200 OK
Sure! Here are three countries along with their capitals:

1. **France** - Paris
2. **Japan** - Tokyo
3. **Brazil** - Brasília

Multi-turn Dialog#

SGLang frontend language can also be used to define multi-turn dialogs.

[5]:
@function
def multi_turn_qa(s):
    s += system(f"You are a helpful assistant than can answer questions.")
    s += user("Please give me a list of 3 countries and their capitals.")
    s += assistant(gen("first_answer", max_tokens=512))
    s += user("Please give me another list of 3 countries and their capitals.")
    s += assistant(gen("second_answer", max_tokens=512))
    return s


state = multi_turn_qa()
print_highlight(state["first_answer"])
print_highlight(state["second_answer"])
[2025-05-29 06:38:23] Prefill batch. #new-seq: 1, #new-token: 18, #cached-token: 18, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:24] Decode batch. #running-req: 1, #token: 73, token usage: 0.00, cuda graph: False, gen throughput (token/s): 61.18, #queue-req: 0
[2025-05-29 06:38:24] INFO:     127.0.0.1:58046 - "POST /generate HTTP/1.1" 200 OK
Certainly! Here is a list of three countries along with their respective capitals:

1. **France** - Paris
2. **Japan** - Tokyo
3. **Brazil** - Brasília
[2025-05-29 06:38:24] Prefill batch. #new-seq: 1, #new-token: 23, #cached-token: 75, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:24] Decode batch. #running-req: 1, #token: 135, token usage: 0.01, cuda graph: False, gen throughput (token/s): 62.64, #queue-req: 0
[2025-05-29 06:38:25] INFO:     127.0.0.1:58048 - "POST /generate HTTP/1.1" 200 OK
Of course! Here is another list of three countries along with their respective capitals:

1. **Spain** - Madrid
2. **India** - New Delhi
3. **Canada** - Ottawa

Control flow#

You may use any Python code within the function to define more complex control flows.

[6]:
@function
def tool_use(s, question):
    s += assistant(
        "To answer this question: "
        + question
        + ". I need to use a "
        + gen("tool", choices=["calculator", "search engine"])
        + ". "
    )

    if s["tool"] == "calculator":
        s += assistant("The math expression is: " + gen("expression"))
    elif s["tool"] == "search engine":
        s += assistant("The key word to search is: " + gen("word"))


state = tool_use("What is 2 * 2?")
print_highlight(state["tool"])
print_highlight(state["expression"])
[2025-05-29 06:38:25] Prefill batch. #new-seq: 1, #new-token: 25, #cached-token: 8, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:25] INFO:     127.0.0.1:58064 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:25] Prefill batch. #new-seq: 2, #new-token: 5, #cached-token: 62, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:25] INFO:     127.0.0.1:58074 - "POST /generate HTTP/1.1" 200 OK
calculator
[2025-05-29 06:38:25] Prefill batch. #new-seq: 1, #new-token: 13, #cached-token: 33, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:25] Decode batch. #running-req: 1, #token: 80, token usage: 0.00, cuda graph: False, gen throughput (token/s): 51.29, #queue-req: 0
[2025-05-29 06:38:25] INFO:     127.0.0.1:58084 - "POST /generate HTTP/1.1" 200 OK
2 * 2.

To solve this, you don't need a calculator as it's a straightforward multiplication:

2 * 2 = 4

So, 2 * 2 equals 4.

Parallelism#

Use fork to launch parallel prompts. Because sgl.gen is non-blocking, the for loop below issues two generation calls in parallel.

[7]:
@function
def tip_suggestion(s):
    s += assistant(
        "Here are two tips for staying healthy: "
        "1. Balanced Diet. 2. Regular Exercise.\n\n"
    )

    forks = s.fork(2)
    for i, f in enumerate(forks):
        f += assistant(
            f"Now, expand tip {i+1} into a paragraph:\n"
            + gen("detailed_tip", max_tokens=256, stop="\n\n")
        )

    s += assistant("Tip 1:" + forks[0]["detailed_tip"] + "\n")
    s += assistant("Tip 2:" + forks[1]["detailed_tip"] + "\n")
    s += assistant(
        "To summarize the above two tips, I can say:\n" + gen("summary", max_tokens=512)
    )


state = tip_suggestion()
print_highlight(state["summary"])
[2025-05-29 06:38:25] Prefill batch. #new-seq: 2, #new-token: 70, #cached-token: 28, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:26] Decode batch. #running-req: 2, #token: 118, token usage: 0.01, cuda graph: False, gen throughput (token/s): 109.72, #queue-req: 0
[2025-05-29 06:38:26] Decode batch. #running-req: 2, #token: 198, token usage: 0.01, cuda graph: False, gen throughput (token/s): 133.22, #queue-req: 0
[2025-05-29 06:38:27] Decode batch. #running-req: 2, #token: 278, token usage: 0.01, cuda graph: False, gen throughput (token/s): 128.86, #queue-req: 0
[2025-05-29 06:38:28] INFO:     127.0.0.1:58092 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:28] Decode batch. #running-req: 1, #token: 201, token usage: 0.01, cuda graph: False, gen throughput (token/s): 141.59, #queue-req: 0
[2025-05-29 06:38:28] INFO:     127.0.0.1:58096 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:28] Prefill batch. #new-seq: 1, #new-token: 333, #cached-token: 39, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:28] Decode batch. #running-req: 1, #token: 406, token usage: 0.02, cuda graph: False, gen throughput (token/s): 72.23, #queue-req: 0
[2025-05-29 06:38:29] Decode batch. #running-req: 1, #token: 446, token usage: 0.02, cuda graph: False, gen throughput (token/s): 64.12, #queue-req: 0
[2025-05-29 06:38:29] Decode batch. #running-req: 1, #token: 486, token usage: 0.02, cuda graph: False, gen throughput (token/s): 63.26, #queue-req: 0
[2025-05-29 06:38:30] Decode batch. #running-req: 1, #token: 526, token usage: 0.03, cuda graph: False, gen throughput (token/s): 63.94, #queue-req: 0
[2025-05-29 06:38:31] INFO:     127.0.0.1:58106 - "POST /generate HTTP/1.1" 200 OK
1. **Balanced Diet**: A balanced diet is essential for maintaining good health. It involves consuming a variety of foods in the right proportions to ensure your body receives all necessary nutrients. Focus on incorporating fruits, vegetables, whole grains, lean proteins, and healthy fats while minimizing processed foods, sugars, and saturated fats. This can help manage weight, reduce the risk of chronic diseases, and support overall health and well-being.
2. **Regular Exercise**: Engaging in regular physical activity is crucial for maintaining good health. It helps strengthen your heart, lungs, muscles, and bones, improves cardiovascular health, and boosts overall fitness levels. Regular exercise can also enhance mental health by reducing stress, anxiety, and depression, improving sleep, increasing energy levels, and promoting better self-esteem. Simple activities like daily walks, cycling, swimming, or your favorite sport can make a significant difference.

These habits, when combined, can significantly improve your physical and mental health.

Constrained Decoding#

Use regex to specify a regular expression as a decoding constraint. This is only supported for local models.

[8]:
@function
def regular_expression_gen(s):
    s += user("What is the IP address of the Google DNS servers?")
    s += assistant(
        gen(
            "answer",
            temperature=0,
            regex=r"((25[0-5]|2[0-4]\d|[01]?\d\d?).){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
        )
    )


state = regular_expression_gen()
print_highlight(state["answer"])
[2025-05-29 06:38:31] Prefill batch. #new-seq: 1, #new-token: 18, #cached-token: 12, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:32] Decode batch. #running-req: 1, #token: 32, token usage: 0.00, cuda graph: False, gen throughput (token/s): 20.99, #queue-req: 0
[2025-05-29 06:38:32] INFO:     127.0.0.1:58120 - "POST /generate HTTP/1.1" 200 OK
208.67.222.222

Use regex to define a JSON decoding schema.

[9]:
character_regex = (
    r"""\{\n"""
    + r"""    "name": "[\w\d\s]{1,16}",\n"""
    + r"""    "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
    + r"""    "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
    + r"""    "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
    + r"""    "wand": \{\n"""
    + r"""        "wood": "[\w\d\s]{1,16}",\n"""
    + r"""        "core": "[\w\d\s]{1,16}",\n"""
    + r"""        "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
    + r"""    \},\n"""
    + r"""    "alive": "(Alive|Deceased)",\n"""
    + r"""    "patronus": "[\w\d\s]{1,16}",\n"""
    + r"""    "bogart": "[\w\d\s]{1,16}"\n"""
    + r"""\}"""
)


@function
def character_gen(s, name):
    s += user(
        f"{name} is a character in Harry Potter. Please fill in the following information about this character."
    )
    s += assistant(gen("json_output", max_tokens=256, regex=character_regex))


state = character_gen("Harry Potter")
print_highlight(state["json_output"])
[2025-05-29 06:38:33] Prefill batch. #new-seq: 1, #new-token: 24, #cached-token: 14, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:33] Decode batch. #running-req: 1, #token: 65, token usage: 0.00, cuda graph: False, gen throughput (token/s): 42.56, #queue-req: 0
[2025-05-29 06:38:33] Decode batch. #running-req: 1, #token: 105, token usage: 0.01, cuda graph: False, gen throughput (token/s): 103.31, #queue-req: 0
[2025-05-29 06:38:34] Decode batch. #running-req: 1, #token: 145, token usage: 0.01, cuda graph: False, gen throughput (token/s): 98.90, #queue-req: 0
[2025-05-29 06:38:34] INFO:     127.0.0.1:58126 - "POST /generate HTTP/1.1" 200 OK
{
"name": "Harry Potter",
"house": "Gryffindor",
"blood status": "Half-blood",
"occupation": "student",
"wand": {
"wood": "Oak",
"core": "Phoenix feather",
"length": 11.0
},
"alive": "Alive",
"patronus": "Stag",
"bogart": "Bellatrix Lestry"
}

Batching#

Use run_batch to run a batch of prompts.

[10]:
@function
def text_qa(s, question):
    s += user(question)
    s += assistant(gen("answer", stop="\n"))


states = text_qa.run_batch(
    [
        {"question": "What is the capital of the United Kingdom?"},
        {"question": "What is the capital of France?"},
        {"question": "What is the capital of Japan?"},
    ],
    progress_bar=True,
)

for i, state in enumerate(states):
    print_highlight(f"Answer {i+1}: {states[i]['answer']}")
[2025-05-29 06:38:34] Prefill batch. #new-seq: 1, #new-token: 1, #cached-token: 13, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:34] INFO:     127.0.0.1:60232 - "POST /generate HTTP/1.1" 200 OK
  0%|          | 0/3 [00:00<?, ?it/s]
[2025-05-29 06:38:34] Prefill batch. #new-seq: 1, #new-token: 9, #cached-token: 17, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:34] Prefill batch. #new-seq: 1, #new-token: 11, #cached-token: 17, token usage: 0.00, #running-req: 1, #queue-req: 0
[2025-05-29 06:38:34] Prefill batch. #new-seq: 1, #new-token: 7, #cached-token: 19, token usage: 0.00, #running-req: 2, #queue-req: 0
100%|██████████| 3/3 [00:00<00:00, 21.43it/s]
[2025-05-29 06:38:34] INFO:     127.0.0.1:60256 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:34] INFO:     127.0.0.1:60266 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:34] INFO:     127.0.0.1:60244 - "POST /generate HTTP/1.1" 200 OK

Answer 1: The capital of the United Kingdom is London.
Answer 2: The capital of France is Paris.
Answer 3: The capital of Japan is Tokyo.

Streaming#

Use stream to stream the output to the user.

[11]:
@function
def text_qa(s, question):
    s += user(question)
    s += assistant(gen("answer", stop="\n"))


state = text_qa.run(
    question="What is the capital of France?", temperature=0.1, stream=True
)

for out in state.text_iter():
    print(out, end="", flush=True)
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
What is the capital of France?<|im_end|>
<|im_start|>assistant
[2025-05-29 06:38:34] INFO:     127.0.0.1:60280 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:38:34] Prefill batch. #new-seq: 1, #new-token: 1, #cached-token: 25, token usage: 0.00, #running-req: 0, #queue-req: 0
The capital of France is Paris.<|im_end|>

Complex Prompts#

You may use {system|user|assistant}_{begin|end} to define complex prompts.

[12]:
@function
def chat_example(s):
    s += system("You are a helpful assistant.")
    # Same as: s += s.system("You are a helpful assistant.")

    with s.user():
        s += "Question: What is the capital of France?"

    s += assistant_begin()
    s += "Answer: " + gen("answer", max_tokens=100, stop="\n")
    s += assistant_end()


state = chat_example()
print_highlight(state["answer"])
[2025-05-29 06:38:34] Prefill batch. #new-seq: 1, #new-token: 17, #cached-token: 14, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:38:34] INFO:     127.0.0.1:60296 - "POST /generate HTTP/1.1" 200 OK
The capital of France is Paris.
[13]:
terminate_process(server_process)
[2025-05-29 06:38:34] Child process unexpectedly failed with an exit code 9. pid=1168429
[2025-05-29 06:38:34] Child process unexpectedly failed with an exit code 9. pid=1168296

Multi-modal Generation#

You may use SGLang frontend language to define multi-modal prompts. See here for supported models.

[14]:
server_process, port = launch_server_cmd(
    "python -m sglang.launch_server --model-path Qwen/Qwen2.5-VL-7B-Instruct --host 0.0.0.0"
)

wait_for_server(f"http://localhost:{port}")
print(f"Server started on http://localhost:{port}")
[2025-05-29 06:38:41] server_args=ServerArgs(model_path='Qwen/Qwen2.5-VL-7B-Instruct', tokenizer_path='Qwen/Qwen2.5-VL-7B-Instruct', tokenizer_mode='auto', skip_tokenizer_init=False, load_format='auto', trust_remote_code=False, dtype='auto', kv_cache_dtype='auto', quantization=None, quantization_param_path=None, context_length=None, device='cuda', served_model_name='Qwen/Qwen2.5-VL-7B-Instruct', chat_template=None, completion_template=None, is_embedding=False, enable_multimodal=None, revision=None, host='0.0.0.0', port=38310, mem_fraction_static=0.88, max_running_requests=200, max_total_tokens=20480, chunked_prefill_size=8192, max_prefill_tokens=16384, schedule_policy='fcfs', schedule_conservativeness=1.0, cpu_offload_gb=0, page_size=1, tp_size=1, pp_size=1, max_micro_batch_size=None, stream_interval=1, stream_output=False, random_seed=772385584, constrained_json_whitespace_pattern=None, watchdog_timeout=300, dist_timeout=None, download_dir=None, base_gpu_id=0, gpu_id_step=1, log_level='info', log_level_http=None, log_requests=False, log_requests_level=0, show_time_cost=False, enable_metrics=False, bucket_time_to_first_token=None, bucket_e2e_request_latency=None, bucket_inter_token_latency=None, collect_tokens_histogram=False, decode_log_interval=40, enable_request_time_stats_logging=False, kv_events_config=None, api_key=None, file_storage_path='sglang_storage', enable_cache_report=False, reasoning_parser=None, dp_size=1, load_balance_method='round_robin', ep_size=1, dist_init_addr=None, nnodes=1, node_rank=0, json_model_override_args='{}', preferred_sampling_params=None, lora_paths=None, max_loras_per_batch=8, lora_backend='triton', attention_backend=None, sampling_backend='flashinfer', grammar_backend='xgrammar', speculative_algorithm=None, speculative_draft_model_path=None, speculative_num_steps=None, speculative_eagle_topk=None, speculative_num_draft_tokens=None, speculative_accept_threshold_single=1.0, speculative_accept_threshold_acc=1.0, speculative_token_map=None, enable_double_sparsity=False, ds_channel_config_path=None, ds_heavy_channel_num=32, ds_heavy_token_num=256, ds_heavy_channel_type='qk', ds_sparse_decode_threshold=4096, disable_radix_cache=False, disable_cuda_graph=True, disable_cuda_graph_padding=False, enable_nccl_nvls=False, enable_tokenizer_batch_encode=False, disable_outlines_disk_cache=False, disable_custom_all_reduce=False, disable_overlap_schedule=False, enable_mixed_chunk=False, enable_dp_attention=False, enable_dp_lm_head=False, enable_two_batch_overlap=False, enable_ep_moe=False, enable_deepep_moe=False, deepep_mode='auto', ep_num_redundant_experts=0, ep_dispatch_algorithm='static', init_expert_location='trivial', enable_eplb=False, eplb_rebalance_num_iterations=1000, expert_distribution_recorder_mode=None, expert_distribution_recorder_buffer_size=1000, enable_expert_distribution_metrics=False, deepep_config=None, enable_torch_compile=False, torch_compile_max_bs=32, cuda_graph_max_bs=None, cuda_graph_bs=None, torchao_config='', enable_nan_detection=False, enable_p2p_check=False, triton_attention_reduce_in_fp32=False, triton_attention_num_kv_splits=8, num_continuous_decode_steps=1, delete_ckpt_after_loading=False, enable_memory_saver=False, allow_auto_truncate=False, enable_custom_logit_processor=False, tool_call_parser=None, enable_hierarchical_cache=False, hicache_ratio=2.0, hicache_size=0, hicache_write_policy='write_through_selective', flashinfer_mla_disable_ragged=False, warmups=None, moe_dense_tp_size=None, n_share_experts_fusion=0, disable_chunked_prefix_cache=False, disable_fast_image_processor=False, mm_attention_backend=None, debug_tensor_dump_output_folder=None, debug_tensor_dump_input_file=None, debug_tensor_dump_inject=False, disaggregation_mode='null', disaggregation_bootstrap_port=8998, disaggregation_transfer_backend='mooncake', disaggregation_ib_device=None, pdlb_url=None)
You have video processor config saved in `preprocessor.json` file which is deprecated. Video processor configs should be saved in their own `video_preprocessor.json` file. You can rename the file or load and save the processor back which renames it automatically. Loading from `preprocessor.json` will be removed in v5.0.
[2025-05-29 06:38:47] You have video processor config saved in `preprocessor.json` file which is deprecated. Video processor configs should be saved in their own `video_preprocessor.json` file. You can rename the file or load and save the processor back which renames it automatically. Loading from `preprocessor.json` will be removed in v5.0.
[2025-05-29 06:38:47] Infer the chat template name from the model path and obtain the result: qwen2-vl.
You have video processor config saved in `preprocessor.json` file which is deprecated. Video processor configs should be saved in their own `video_preprocessor.json` file. You can rename the file or load and save the processor back which renames it automatically. Loading from `preprocessor.json` will be removed in v5.0.
[2025-05-29 06:38:53] You have video processor config saved in `preprocessor.json` file which is deprecated. Video processor configs should be saved in their own `video_preprocessor.json` file. You can rename the file or load and save the processor back which renames it automatically. Loading from `preprocessor.json` will be removed in v5.0.
[2025-05-29 06:38:54] Attention backend not set. Use flashinfer backend by default.
[2025-05-29 06:38:54] Automatically reduce --mem-fraction-static to 0.792 because this is a multimodal model.
[2025-05-29 06:38:54] Init torch distributed begin.
[2025-05-29 06:38:55] Init torch distributed ends. mem usage=0.00 GB
[2025-05-29 06:38:55] init_expert_location from trivial
[2025-05-29 06:38:55] Load weight begin. avail mem=61.76 GB
[2025-05-29 06:38:55] Multimodal attention backend not set. Use sdpa.
[2025-05-29 06:38:55] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards:   0% Completed | 0/5 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  20% Completed | 1/5 [00:00<00:03,  1.16it/s]
Loading safetensors checkpoint shards:  40% Completed | 2/5 [00:01<00:02,  1.22it/s]
Loading safetensors checkpoint shards:  60% Completed | 3/5 [00:02<00:01,  1.24it/s]
Loading safetensors checkpoint shards:  80% Completed | 4/5 [00:03<00:00,  1.26it/s]
Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:03<00:00,  1.66it/s]
Loading safetensors checkpoint shards: 100% Completed | 5/5 [00:03<00:00,  1.44it/s]

[2025-05-29 06:38:59] Load weight end. type=Qwen2_5_VLForConditionalGeneration, dtype=torch.bfloat16, avail mem=46.06 GB, mem usage=15.70 GB.
[2025-05-29 06:38:59] KV Cache is allocated. #tokens: 20480, K size: 0.55 GB, V size: 0.55 GB
[2025-05-29 06:38:59] Memory pool end. avail mem=44.69 GB
2025-05-29 06:38:59,728 - INFO - flashinfer.jit: Prebuilt kernels not found, using JIT backend
[2025-05-29 06:39:01] max_total_num_tokens=20480, chunked_prefill_size=8192, max_prefill_tokens=16384, max_running_requests=200, context_len=128000
[2025-05-29 06:39:01] INFO:     Started server process [1169488]
[2025-05-29 06:39:01] INFO:     Waiting for application startup.
[2025-05-29 06:39:01] INFO:     Application startup complete.
[2025-05-29 06:39:01] INFO:     Uvicorn running on http://0.0.0.0:38310 (Press CTRL+C to quit)
[2025-05-29 06:39:01] INFO:     127.0.0.1:37926 - "GET /v1/models HTTP/1.1" 200 OK
[2025-05-29 06:39:02] INFO:     127.0.0.1:37938 - "GET /get_model_info HTTP/1.1" 200 OK
[2025-05-29 06:39:02] Prefill batch. #new-seq: 1, #new-token: 6, #cached-token: 0, token usage: 0.00, #running-req: 0, #queue-req: 0
2025-05-29 06:39:04,113 - INFO - flashinfer.jit: Loading JIT ops: batch_prefill_with_kv_cache_dtype_q_bf16_dtype_kv_bf16_dtype_o_bf16_dtype_idx_i32_head_dim_qk_128_head_dim_vo_128_posenc_0_use_swa_False_use_logits_cap_False_f16qk_False
2025-05-29 06:39:04,127 - INFO - flashinfer.jit: Finished loading JIT ops: batch_prefill_with_kv_cache_dtype_q_bf16_dtype_kv_bf16_dtype_o_bf16_dtype_idx_i32_head_dim_qk_128_head_dim_vo_128_posenc_0_use_swa_False_use_logits_cap_False_f16qk_False
[2025-05-29 06:39:04] INFO:     127.0.0.1:37952 - "POST /generate HTTP/1.1" 200 OK
[2025-05-29 06:39:04] The server is fired up and ready to roll!


NOTE: Typically, the server runs in a separate terminal.
In this notebook, we run the server and notebook code together, so their outputs are combined.
To improve clarity, the server logs are displayed in the original black color, while the notebook outputs are highlighted in blue.
We are running those notebooks in a CI parallel environment, so the throughput is not representative of the actual performance.
Server started on http://localhost:38310
[15]:
set_default_backend(RuntimeEndpoint(f"http://localhost:{port}"))
[2025-05-29 06:39:06] INFO:     127.0.0.1:46838 - "GET /get_model_info HTTP/1.1" 200 OK

Ask a question about an image.

[16]:
@function
def image_qa(s, image_file, question):
    s += user(image(image_file) + question)
    s += assistant(gen("answer", max_tokens=256))


image_url = "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
image_bytes, _ = load_image(image_url)
state = image_qa(image_bytes, "What is in the image?")
print_highlight(state["answer"])
[2025-05-29 06:39:07] Prefill batch. #new-seq: 1, #new-token: 307, #cached-token: 0, token usage: 0.00, #running-req: 0, #queue-req: 0
[2025-05-29 06:39:08] Decode batch. #running-req: 1, #token: 340, token usage: 0.02, cuda graph: False, gen throughput (token/s): 5.21, #queue-req: 0
[2025-05-29 06:39:09] Decode batch. #running-req: 1, #token: 380, token usage: 0.02, cuda graph: False, gen throughput (token/s): 39.42, #queue-req: 0
[2025-05-29 06:39:10] Decode batch. #running-req: 1, #token: 420, token usage: 0.02, cuda graph: False, gen throughput (token/s): 39.40, #queue-req: 0
[2025-05-29 06:39:11] INFO:     127.0.0.1:46848 - "POST /generate HTTP/1.1" 200 OK
The image shows a man in a yellow shirt and jeans standing on the tailgate of a yellow SUV, using an industrial-grade electric iron to press tissues or clothes that are neatly arranged on a tall supporting assembly equipped with adjustable bolsters or levers. This assembly elevates the clothes for an efficient workspace, preventing wrinkles on materials rendered crisp and flat. The SUV has the appearance and numbering suggesting that it may belong to a services or cab company, possibly for cleaning services of taxis. The surroundings depict an urban street scene in New York City with notable yellow taxis seen in the background, alongside municipal鑪-owner street labeling and a few city buildings indicating the location's downtown area.
[17]:
terminate_process(server_process)
[2025-05-29 06:39:11] Child process unexpectedly failed with an exit code 9. pid=1169700
[2025-05-29 06:39:11] Child process unexpectedly failed with an exit code 9. pid=1169634