Benchmark and Profiling#
Benchmark#
Benchmark the latency of running a single static batch without a server. The arguments are the same as for
launch_server.py
. Note that this is a simplified test script without a dynamic batching server, so it may run out of memory for a batch size that a real server can handle. A real server truncates the prefill into several batches, while this simplified script does not.python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch 32 --input-len 256 --output-len 32
Benchmark offline processing. This script will start an offline engine and run the benchmark.
python3 -m sglang.bench_offline_throughput --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --num-prompts 10
Benchmark online serving. Please use
sglang.launch_server
to launch a server first and run the following command.python3 -m sglang.bench_serving --backend sglang --num-prompt 10
Profile with PyTorch Profiler#
Pytorch Profiler is a convenient basic tool to inspect kernel execution time, call stack, and kernel overlap and occupancy.
To profile a server
# set trace path
export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log
# start server
python -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct
# send profiling request from client
python -m sglang.bench_serving --backend sglang --model-path meta-llama/Llama-3.1-8B-Instruct --num-prompts 10 --sharegpt-output-len 100 --profile
Please make sure that the SGLANG_TORCH_PROFILER_DIR
should be set at both server and client side, otherwise the trace file cannot be generated correctly . A secure way will be setting SGLANG_TORCH_PROFILER_DIR
in the .*rc
file of shell (e.g. ~/.bashrc
for bash shells).
To profile offline
export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log
python -m sglang.bench_offline_throughput --model-path meta-llama/Llama-3.1-8B-Instruct --dataset-name random --num-prompts 10 --profile --mem-frac=0.8
View Traces
Trace files can be loaded and visualized from:
https://ui.perfetto.dev/ (any browser)
chrome://tracing (Chrome browser only)
If browser cannot open trace file due to its large size, client can generate a small trace file (<100MB) by controlling number of prompts and lengths of prompt outputs. For example, when profiling a server,
python -m sglang.bench_serving --backend sglang --model-path meta-llama/Llama-3.1-8B-Instruct --num-prompts 2 --sharegpt-output-len 100 --profile
sets the number of prompts to 2 with --num-prompts
argument and limits the length of output sequences to 100 with --sharegpt-output-len
argument, which can generate a small trace file for browser to open smoothly.
Profile with Nsight#
Nsight systems is an advanced tool that exposes more profiling details, such as register and shared memory usage, annotated code regions and low-level CUDA APIs and events.
Prerequisite: install using apt, or run inside a NVIDIA Docker container or SGLang Docker container.
# install nsys
# https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html
apt update
apt install -y --no-install-recommends gnupg
echo "deb http://developer.download.nvidia.com/devtools/repos/ubuntu$(source /etc/lsb-release; echo "$DISTRIB_RELEASE" | tr -d .)/$(dpkg --print-architecture) /" | tee /etc/apt/sources.list.d/nvidia-devtools.list
apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
apt update
apt install nsight-systems-cli
To profile a single batch, use
nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node python3 -m sglang.bench_one_batch --model meta-llama/Meta-Llama-3-8B --batch-size 64 --input-len 512
To profile a server, e.g.
# launch the server, set the delay and duration times according to needs
# after the duration time has been used up, server will be killed by nsys
nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node -o sglang.out --delay 60 --duration 70 python3 -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct --disable-radix-cache
# client
python3 -m sglang.bench_serving --backend sglang --num-prompts 1000 --dataset-name random --random-input 1024 --random-output 512
In practice, we recommend users to set --duration
argument to a large value. Whenever user wants the server to stop profiling. Firstly run:
nsys sessions list
to get the session id in the form of profile-XXXXX
, then run:
nsys stop --session=profile-XXXXX
to manually kill the profiler and generate nsys-rep
files instantly.
Use NVTX to annotate code regions, e.g. to see their execution time.
# install nvtx
pip install nvtx
# code snippets
import nvtx
with nvtx.annotate("description", color="color"):
# some critical code
Other tips#
You can benchmark a model using dummy weights by only providing the config.json file. This allows for quick testing of model variants without training. To do so, add
--load-format dummy
to the above commands and then you only need a correctconfig.json
under the checkpoint folder.You can benchmark a model with modified configs (e.g., less layers) by using
--json-model-override-args
. For example, you can benchmark a model with only 2 layers and 2 kv heads usingpython -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch 32 --input-len 256 --output-len 32 --load-format dummy --json-model-override-args '{"num_hidden_layers": 1, "num_key_value_heads": 1}'
You can use
--python-backtrace=cuda
to see python call stack for all CUDA kernels, as in PyTorch Profiler. (Caveat: this can cause inaccurately long kernel runtimes for CUDA event based timing)For more args please see https://docs.nvidia.com/nsight-systems/UserGuide/index.html