Attention Backend#
SGLang supports multiple attention backends. Each of them has different pros and cons. You can test them according to your needs.
Supporting matrix for different attention backends#
Backend |
Page Size > 1 |
Spec Decoding |
MLA |
Sliding Window |
MultiModal |
---|---|---|---|---|---|
FlashInfer |
❌ |
✅ |
✅ |
✅ |
✅ |
FA3 |
✅ |
✅ |
✅ |
✅ |
✅ |
Triton |
❌ |
✅ |
✅ |
✅ |
❌ |
Torch Native |
❌ |
❌ |
✅ |
❌ |
❌ |
FlashMLA |
✅ |
✅ |
✅ |
❌ |
❌ |
TRTLLM MLA |
✅ |
❌ |
✅ |
✅ |
❌ |
Ascend |
✅ |
❌ |
✅ |
❌ |
❌ |
Wave |
✅ |
❌ |
❌ |
❌ |
❌ |
Notes:
TRTLLM MLA only implements decode operations. For prefill operations (including multimodal inputs), it falls back to FlashInfer MLA backend.
Note: Every kernel backend is compatible with a page size > 1 by specifying an argument such as --page-size 16
.
This is because a page size of 16 can be converted to a page size of 1 in the kernel backend.
The “❌” and “✅” symbols in the table above under “Page Size > 1” indicate whether the kernel actually operates with a page size greater than 1, rather than treating a page size of 16 as a page size of 1.
User guide#
Launch command for different attention backends.#
FlashInfer (Default for Non-Hopper Machines, e.g., A100, A40)
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend flashinfer
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-V3 --attention-backend flashinfer --trust-remote-code
FlashAttention 3 (Default for Hopper Machines, e.g., H100, H200, H20)
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend fa3
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-V3 --trust-remote-code --attention-backend fa3
Triton
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend triton
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-V3 --attention-backend triton --trust-remote-code
Torch Native
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend torch_native
FlashMLA
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend flashmla --trust-remote-code
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend flashmla --kv-cache-dtype fp8_e4m3 --trust-remote-code
TRTLLM MLA (Optimized for Blackwell Architecture, e.g., B200)
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend trtllm_mla --trust-remote-code
TRTLLM MLA with FP8 KV Cache (Higher concurrency, lower memory footprint)
python3 -m sglang.launch_server --tp 8 --model deepseek-ai/DeepSeek-R1 --attention-backend trtllm_mla --kv-cache-dtype fp8_e4m3 --trust-remote-code
Ascend
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend ascend
Wave
python3 -m sglang.launch_server --model meta-llama/Meta-Llama-3.1-8B-Instruct --attention-backend wave
Steps to add a new attention backend#
To add a new attention backend, you can learn from the existing backends
(python/sglang/srt/layers/attention/triton_backend.py
, python/sglang/srt/layers/attention/flashattention_backend.py
)
and follow the steps below.
Run without cuda graph. Support the two forward functions
forward_extend
Will be used for prefill, prefill with KV cache, and target verification
It will be called once per layer
forward_decode
Will be used for normal decode, and draft decode
It will be called once per layer
init_forward_metadata
Initialize the class and common metadata shared by all layers
Call the plan function for optimizations like split_kv
It will be called once per forward
Run with cuda graph. It has two phases (capture and replay) and you need to implement three functions
init_cuda_graph_state
It will be called once during life time
Create all common shared buffers
init_forward_metadata_capture_cuda_graph
It will be called before capturing a cuda graph
It is similar to init_forward_metadata but write the medatada to some pre-defined buffers
init_forward_metadata_replay_cuda_graph
It will be called before replaying a cuda graph
This function is in the critical path and needs to be fast