Rerank Models#
SGLang offers comprehensive support for rerank models by incorporating optimized serving frameworks with a flexible programming interface. This setup enables efficient processing of cross-encoder reranking tasks, improving the accuracy and relevance of search result ordering. SGLang’s design ensures high throughput and low latency during reranker model deployment, making it ideal for semantic-based result refinement in large-scale retrieval systems.
Important
They are executed with --is-embedding
and some may require --trust-remote-code
Example Launch Command#
python3 -m sglang.launch_server \
--model-path BAAI/bge-reranker-v2-m3 \
--host 0.0.0.0 \
--disable-radix-cache \
--chunked-prefill-size -1 \
--attention-backend triton \
--is-embedding \
--port 30000
Example Client Request#
import requests
url = "http://127.0.0.1:30000/v1/rerank"
payload = {
"model": "BAAI/bge-reranker-v2-m3",
"query": "what is panda?",
"documents": [
"hi",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]
}
response = requests.post(url, json=payload)
response_json = response.json()
for item in response_json:
print(f"Score: {item['score']:.2f} - Document: '{item['document']}'")
Supported rerank models#
Model Family (Rerank) |
Example HuggingFace Identifier |
Chat Template |
Description |
---|---|---|---|
BGE-Reranker (BgeRerankModel) |
|
N/A |
Currently only support |